CMMS Maintenance Management Predictive Maintenance Reliability Reliability Engineering Work Processes

The Reliability-Driven Maintenance Organization

EP Editorial Staff | November 4, 2014

1114f4-1

Getting there requires taking a close look at weaknesses and taking measurable steps to correct them. Here, a respected industry expert shares tips on how to become a high-performing operation.

By Christer Idhammar

Any plant maintenance department wants to be known as a cost-effective organization. For our purposes, “cost effective” means maintenance without waste: where waste is the gap between how good the organization is and how good it can become. Waste includes poor safety, losses in quality and high costs.

In a poorly performing maintenance organization, the gap between the real and the ideal world tends to increase over time because it reacts to problems instead of preventing them. As a result, there isn’t time to take measures that will break this reactive work cycle. Even in periods when equipment is operating well and no panic-work comes up, the maintenance organization tends to slow down and wait for the next problem. This creates a culture where maintenance personnel think it is useless to start other work because they will be interrupted with real, or often perceived, urgent work. So even between reactive work, maintenance personnel accomplish very little.

From an operations standpoint, this situation can be comforting because it means maintenance can deal with equipment problems on short notice. It is far easier for operations to call maintenance to fix a problem when it occurs than to write a work request to correct an anticipated problem. This type of relationship typically occurs when operations does not feel responsible for the cost of maintenance. Even if most work is requested by operations, the maintenance manager is in the hot seat if budgets are overrun.

A high-performing maintenance organization is far different. It is founded on anticipating what will happen in the future and planning and scheduling corrective actions in advance. It is not only DO-oriented, it is THINK-oriented. It is an organization that continuously designs out problems and improves.

  • Correcting attitudes and cultures
  • To develop a high-performing maintenance organization, the first steps are:
  • To fully understand how good the organization is currently, and locate the gaps where improvement can occur
  • To develop and commit to an action plan to close the gaps, including clearly defined roles and responsibilities
  • To change work attitudes and culture.

In some plants, the typical first step toward improving maintenance performance is to purchase a new computerized maintenance management system (CMMS) or instruments for predictive maintenance. They may also implement fragmented improvement initiatives using Reliability Centered Maintenance (RCM), 5S or similar tools. And while these are good tools, they often fail because they are implemented before an organization does the basics well or changes the work culture to support their efficient use.

Bill Gates addressed succinctly the potential value of technology-based tools when he said, “The first rule of any technology used in a business is that automation applied to an efficient, well-defined operation will magnify the efficiency. The second is that automation applied to an inefficient or poorly defined operation will magnify the inefficiency.”

Measuring results

To measure the results of maintenance activities, plants traditionally view good maintenance in terms of low costs. With few exceptions, this cost is always considered too high. This view of maintenance stems from an old attitude, which is that maintenance only costs money and does not contribute to productivity.

Plants must change the way they measure maintenance results. Analysis of production advancements over the past 35 years reveals that many process industries have more than tripled their production output. During this time, the number of operators has decreased about 30%, while the number of maintenance crafts people has decreased about 6%. This growth in productivity can be traced to increased automation and more reliable equipment—and it’s not necessarily a result of efficient maintenance.

A common way plant maintenance departments measure their effectiveness is to compare maintenance costs with other plants. This is the wrong thing to do, because those who are not the top performer in the comparison will waste time explaining why the figures are wrong instead of focusing on how to improve. We also know that different accounting principles can make a difference of up to 100% in what is considered a maintenance cost, capital investment or operations expense.

The focus must instead be on learning about activities, technology and processes that drive reliability, safety and cost. Better planning and scheduling of maintenance work correlates directly to high manufacturing reliability, better safety and lower costs. It is also important to understand that predictive maintenance alone does not prevent anything. It only gives information on failures that are developing toward a breakdown. But with this information, plants can “anticipate” the future and plan and schedule corrective maintenance actions.

In the best case, plants can schedule the corrective action to be executed in a maintenance “window.” This is an opportunity that presents itself when equipment is down for reasons other than planned and scheduled maintenance, such as changing belts, unscheduled shutdowns, cleaning and other tasks. The link between predictive maintenance and planning and scheduling of work is an essential basic reliability and maintenance process. Executed with precision, it will increase quality product throughput, improve safety and reduce costs.

Performance indicators*

The right thing to do is benchmark the maintenance department and measure continuous improvement internally. If comparing with other organizations, plants should learn what processes best performers use to drive improved reliability and maintenance costs, and how they execute them well.

To continuously improve execution of essential processes, it’s necessary implement performance indicators as close to the action as possible. This will motivate and trigger actions that will influence the overall performance.

In a reactive organization, break-in work must be reduced. During transition to an organization in control, planning and scheduling quality can be an indicator. Trends in backlog, overtime and contractor hours can also be meaningful indicators when the organization is starting to gain control. When an organization gains control over its maintenance strategies, it becomes important to measure Root Cause Implementations completed and problems eliminated. To do this properly, clear definitions on what’s measured are necessary.

In a study of 38 process lines, the only strong correlation between low and high performers is how well they planned and scheduled maintenance and operations work. All machines that planned and scheduled more than 50% of work had measured Reliability (as % Quality x % Time, with Time based on 8760 hours available per year) of over 85%. Top performers that planned and scheduled between 75% and 90% of all work achieved a Reliability of 92–96%.

Work measurements

Plants that use hands-on tools or other types of work measurements as a way to determine maintenance efficiency are doing the wrong thing. Here’s why:

  • They do not promote cooperation between management and crafts people.
  • They do not consider those who may be busy doing the right thing. For example, in the work-measurement system, thinking time and trouble-shooting time is considered hand-off-tools and, thus, non-productive.
  • Almost all time identified as non-productive by work measurement is typically attributed to a lack of work management and planning and/or scheduling. In fact, it is a result of poor management.
  • When equipment is operating, it is not always true that maintenance people who are busy with hands-on tools are productive. In fact, they can be busy doing the wrong things or only pretending to be busy.
  • In a scheduled shutdown, it is true that people are more productive if they can work on planned and scheduled work without interruptions. Again, only good planning and scheduling—good management—can accomplish this.

Partnering in reliability

To achieve results-oriented reliability and maintenance, plants must realize that production is a partnership between operations, maintenance, stores and engineering. The traditional view is that maintenance is a service organization; operations is the internal customer of maintenance; stores support maintenance; and engineering is an isolated “happy island.” The right thing to do is to view these sectors as partners in a joint venture to reliably produce quality products.

In this partnership, maintenance will deliver equipment reliability; operations will deliver production process reliability; stores will continue to support maintenance; and engineering will support both maintenance and operations, as well as practice life-cycle costs (LCC) or asset management in its design, specification and selection procedures for new equipment. This means that equipment selection will be based on the cost to buy and cost to own. The concept includes reliability and maintainability analyses.

Recognition is important

Most maintenance organizations can verify that they receive recognition when they fix a major breakdown, but seldom hear anything when they prevent a breakdown. While there is nothing wrong with recognizing good work in a breakdown situation, if this is the only time maintenance people are recognized, it sends the wrong message. This type of recognition fosters a culture of maintenance heroes or “Maintenance Tarzans.” They become action-oriented, which can make it difficult for them to transition to more planned, scheduled and organized maintenance work.

Overtime compensation can motivate, especially considering that breakdowns are about 74% more likely to occur when the full crew is off site. However, this is changing as the Y-generation enters the job market—a group that values time off more than higher pay. Plants need to remember that poor maintenance is visible and good maintenance is invisible, because it is less action-oriented. It is always right for plants to recognize implemented improvements, failure avoidance, planning and scheduling performance and overall reliability.

Performance-improving tips

The following strategies can help develop a high-performing organization:

Work management and planning & scheduling: Most frontline supervisors schedule work to the people they have available. The right thing to do is schedule work that must be done, prioritize it based on risk and what is best for the business, then schedule people to execute this work.

Time estimates are almost always based on four or eight-hour time segments. In many cases, no fewer than two people are assigned to each job. This provides the supervisor a buffer of resources he or she can use for jobs added to the schedule on short notice. In this setup, scheduling-compliance can wrongly appear to be high. Therefore, it’s better to schedule work with real time estimates and include problem solving, or thinking time, as part of all work done by crafts people.

In a high-performing maintenance organization, 20% of all effort hours should be used on problem elimination or continuous improvement that will “design out maintenance problems.”

Anticipation: Most plants have morning meetings to discuss what happened the previous day and night, and what is planned for the current day. High- performing maintenance organizations will spend most of this meeting on what will happen tomorrow and next week. Though it sounds unrealistic, this can be done because very few problems occur and little time needs to be spent on yesterday’s problems. The focus should be on future activities.

Following the same principle, the organization should work on a monthly or weekly forecast and finalize the next day’s schedule about four hours before the end of each day. The schedule should be communicated to crafts people before they leave for the day so they can prepare for the next day’s work.

Flexibility: The 12- to 14-person craft-line-oriented maintenance organization is, or must soon be, a thing of the past. Craft lines should not limit work flexibility—only work skills to do a job safely should be a constraint. This will often require changes in union agreements and a focused training program for crafts people. Experience indicates that if management presents a clear plan, it will be well received.

Lost-production analyses: These types of analyses often reflect lost production only by department. Such a procedure does not build a partnership between departments, nor does it solve problems.

The better approach is to define, solve and classify a problem by department, equipment and type of failure after analyses are complete, then follow up on how to solve the problem in the future.

Storeroom closure: Many maintenance organizations waste up to 30% percent of their time walking to the store(s) and searching for parts. Plants should plan and schedule maintenance activities so stores can prepare and deliver parts where and when they are needed. This will require a Bill Of Material (BOM) populated to 95%+ accuracy.

Technical documentation: All technical and economic information about equipment should be readily available. The equipment, loop or circuit number should be the key to this information. At a minimum, all parts kept in stores, or not kept in stores, should be tied to equipment identification in the BOMs. The lack of good and reliable documentation is one of the reasons why most maintenance planners do not have time to plan.

Maintenance shift coverage: Most three-shift plants have maintenance resources on the late shifts. Some have a maintenance supervisor on each shift. Ideally, a plant should operate without maintenance people on the night or evening shift. This is possible only if maintenance believes the plant can operate 16 hours without major maintenance problems. If this is not possible, the plant should do something about it.

The above issues are select examples of actions and cultures that will promote high-performing maintenance. It is important that a plant maintenance organization seriously examine how good it truly is, determine if it is promoting the right things and if improvements are needed. Only then can a maintenance organization proceed to make the changes needed to become as good as it can be. MT

Christer Idhammar is the Founder of IDCON, Inc. (idcon.com).

FEATURED VIDEO

Sign up for insights, trends, & developments in
  • Machinery Solutions
  • Maintenance & Reliability Solutions
  • Energy Efficiency
Return to top