Automation Featured Maintenance May 2017 Print Predictive Maintenance Reliability Sensors

Training, Automation Drive Extrusion Reliability

Michelle Segrest | May 15, 2017

When designing the new extrusion plant, the team needed a solution to how best deliver the cooling water for the extrusion process. After some creative design work, it was decided to create a 300-ft.-long tunnel under the facility, specifically for this purpose. All photos courtesy of Aquatherm.

German-based Aquatherm provides reliable, sustainable pipe production as a result of advanced technology, automation, and in-house design and innovation.

As one of the first three companies in the European market to manufacture under-floor heating systems, German-based Aquatherm, headquartered in Attendorn, has come a long way since the company was founded 44 years ago. It now leverages state-of-the-art automation and innovative energy-saving systems to drive its reliability and sustainability programs.

“Until a few years ago, maintenance employees needed to localize and correct a fault indication directly at a machine if a system error occurred,” explained Aquatherm’s Maik Rosenberg, the company’s global co-managing director. “Power converters and frequency converters could only be parameterized manually or adjusted by potentiometers. Now, we can access the central control from various places within the company. If needed, we can access every single drive of an extrusion line.”

Maintenance staff members can correct faults using smartphones and also receive repair orders directly from a tablet. They use the handheld technology to recall all the information needed for order fulfillment in a central folder, and then take advantage of the ability to choose required materials from its digitized stock inventory.

“It is possible to operate all our machines online through our production-activity control system,” Rosenberg said. “The system enables us to monitor the energy consumption of all the machines and their components.”

The use of automation has enabled Aquatherm to establish itself as one of the world’s leading manufacturers of plastic piping systems for heating, cooling, domestic water, industrial, and sanitary applications. The company was founded in 1973 by Gerhard Rosenberg for the development, production, and installation of warm-water, under-floor heating.

In 1980, the company developed the plastic pipe system Fusiotherm, which is made of polypropylene-random (PP-R) for sanitary equipment and heating installations. This innovation has been the foundation of Aquatherm’s continuous growth. The company has developed into a global business that is represented in 75 countries and is a market leader in many sectors and application fields.

Aquatherm employs almost 600 employees within the group of companies. In 2016, it manufactured more than 40,000 km of pipe and 50-million molded/fabricated components out of 18,000 ton of raw materials.

In April 2017, Aquatherm opened a state-of-the-art 160,000-sq.-ft. facility in Attendorn that features 19 extrusion lines. The building has been designed and constructed to offer space for a total of 32 production lines, underscoring the company’s commitment to future growth.

Aquatherm North America (Aquatherm NA) was established roughly 10 years ago as a sales, marketing, and support partner and operated independently until late 2015 when Aquatherm Worldwide assumed control of the North American companies Aquatherm LP (U.S.) and Aquatherm Corp. (Canada). North American operations are based in Lindon, UT, and feature a new 82,000-sq.-ft. facility that opened in April 2017. All corporate departments are housed in this facility, along with a cutting-edge Design and Fabrication Services department and quality-assurance laboratory.

This is a portion of the process-cooling system for Aquatherm’s new extrusion lines. Aquatherm pumps more than 121-million gal. each year from the Bigge River at temperatures from 50 F to 57 F. By German law, the water returned to the river can be no more than 73.4 F. The firm has three water loops running through heat exchangers—process cooling, electric-motor cooling (the largest motor is 800 kW), and heat recovery for space heating and domestic hot water.

This is a portion of the process-cooling system for Aquatherm’s new extrusion lines. Aquatherm pumps more than 121-million gal. each year from the Bigge River at temperatures from 50 F to 57 F. By German law, the water returned to the river can be no more than 73.4 F. The firm has three water loops running through heat exchangers—process cooling, electric-motor cooling (the largest motor is 800 kW), and heat recovery for space heating and domestic hot water.

Maintenance best practices

Aquatherm’s maintenance team includes 40 specialized workers—metal workers, electricians, and machine fitters. Most are maintenance foremen and technicians. Consistent and regular training is the key to keeping the team up to date with the latest technologies.

“Our maintenance workers are trained regularly, both in-house and externally,” Rosenberg said. “We empower them to perform their tasks as efficiently and quickly as possible.

The operations and maintenance teams work closely together. Short distances between the different departments make it easy to react quickly to challenges and encourage cooperation and information exchange between team members. Aquatherm is committed to keeping most of the maintenance of its equipment in house. “It is part of our company culture to do as much of our maintenance in house as possible with our highly qualified staff,” Rosenberg said. “We have a staff design team, which uses CAD to design our extrusion and injection-moulding tools. The tools are then manufactured in our tool shop. For us there is great value in using our own experienced staff to design special tools. This allows us to be highly flexible. We can react to new requirements quickly and appropriately while ensuring we preserve our high standards.”

Automation and advanced technology continues to play a key role.

“One good example of how our maintenance team made a difference for our production department and helped us to save costs is the installation of an additional measuring device at the beginning of our extrusion lines,” Rosenberg explained. “The device measures the pipe diameter and compares the pipe’s actual value with standard values. Previously, we only had a measuring device at the end of the production lines. With the new device installed at the beginning of the line, we can react immediately to variations and adjust the machine settings, as necessary. This is a simple but smart solution that has helped us reduce machine setup times and increase product quality.”

Aquatherm’s new extrusion lines operate three shifts a day, and ran for more than 340 days in 2016. Aquatherm engineers designed everything in the plant itself, including the control systems. The firm designs, builds, and automates their production lines, rather than purchasing complete lines, which may not be optimized for their product lines. Because they had to maintain production, it took 10 months to move the lines from the old building into the new building.

Aquatherm’s new extrusion lines operate three shifts a day, and ran for more than 340 days in 2016. Aquatherm engineers designed everything in the plant itself, including the control systems. The firm designs, builds, and automates their production lines, rather than purchasing complete lines, which may not be optimized for their product lines. Because they had to maintain production, it took 10 months to move the lines from the old building into the new building.

Building for growth

Planning and development of the new extrusion production facility was done in-house with a team of experts. From the initial planning phase, all participating departments were involved—extrusion, building-technology, electrical, metal-working, and technical-purchasing departments, as well as plant and company management.

“The idea behind staffing it was to have a cross-functional team combining the experience of all departments and to implement missed opportunities of the past in the new building,” Rosenberg said. “The ideal pipe production was planned using all the technical and organizational input of the entire team.”

All 19 extrusion lines now are located on the ground floor of the building. The material supplies, as well as auxiliary and packaging materials, are provided on the upper floor. The material supply is almost fully automated, Rosenberg said. The raw materials are transported directly from the supply silos, which are located outside the building, using seven coupled stations that move the materials through the ducts to the machines.

“All cooling, power, water, and compressed air is supplied directly to the machines through a central supply channel integrated in the floor,” Rosenberg explained. “This allows the respective areas to be clearly separated in a structured way, enabling the focus to be on respective core competencies of the involved teams. All process and building controls (material supply, cooling systems, fresh air, light, and safety engineering) were programmed and managed in house.”

The new 160,000-sq.-ft. Aquatherm manufacturing facility features 19 extrusion lines, has space for a total of 32 lines, and is all concrete to comply with German fire codes that deal with plastics fabrication. In 2016, the company manufactured more than 40,000 km of pipe and 50-million molded/fabricated components out of 18,000 ton of raw materials.

The new 160,000-sq.-ft. Aquatherm manufacturing facility features 19 extrusion lines, has space for a total of 32 lines, and is all concrete to comply with German fire codes that deal with plastics fabrication. In 2016, the company manufactured more than 40,000 km of pipe and 50-million molded/fabricated components out of 18,000 ton of raw materials.

Sustainability

Sustainability has been a core value of the company from the time it was founded more than four decades ago, according to Barry Campbell, vice-president of marketing, Aquatherm North America.

“We believe sustainability is a vital component in a company’s success,” Campbell explained. “That is why we have certified our energy-management system according to DIN EN ISO 50001 and our environmental-management system according to DIN EN ISO 14001. It is also why we are the only piping system in North America that can contribute directly to LEED v4 points. We consistently are working to reduce our consumption of energy, water, and resources, as well as lower the amount of our waste and emissions. For example, in 2015, we saved more than 42 tons of carbon dioxide. We also reduced the consumption of raw materials by more than 288 tons by reusing plastic materials in our production processes.”

Energy savings play into the company’s sustainability picture. “We use the hot water, hot air, and waste heat generated during production processes to heat our state-of-the-art extrusion building, as well as another building,” Rosenberg said. “The total heated area is approximately 15,500 square meters. The system that we have in place is so efficient, we only need additional heating for approximately 10 days a year when production is down during the Christmas holidays.”

The company also started a program to replace the lamps in all of its production and warehouse buildings with LEDs.  “To save energy, we also have installed movement-sensitive lighting in the technical basement of our new extrusion building,” Rosenberg added.

Automation triggers continuous improvement

With constant changes in technology, automation continues to be a crucial element in every one of Aquatherm’s processes.

“Automation gains more and more importance, especially with regard to quality control,” Rosenberg said. “One example is the in-line measurement of pipe-wall thickness. Monitoring data is sent to our control center and displayed as graphics on computer monitors. In the event of an error, a message is sent to the shift supervisor and an alarm warns the lead operator. This allows us to constantly minimize reaction time, helping us to guarantee product quality.”

Additionally, Aquatherm controls many physical parameters—including temperature, speed, and melting behavior—in real time.

“Soon, we will be equipping our maintenance teams with tablets, which will enable them to perform remote maintenance from home on weekends when they are on call,” continued Rosenberg.

To help ensure continuous improvement, the company enhances its automation and technology with old-school methods that still contribute to overall productivity. “We hold meetings at the end of each shift,” Rosenberg said. “In these meetings, we review the shift, analyze what went well, and discuss any issues that need to be addressed. All information is summarized and written in a hand-over report. All of our manufacturing plants communicate regularly and share best practices and, in the end, it’s a combination of all these things that make us a productive and sustainable company.”

FEATURED VIDEO

CURRENT ISSUE

mag_cover0917

ABOUT THE AUTHOR

Michelle Segrest

Michelle Segrest

View Comments

Sign up for insights, trends, & developments in
  • Machinery Solutions
  • Maintenance & Reliability Solutions
  • Energy Efficiency
Return to top